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A conceptual framework for analysing the energetics of density-stratified Boussinesq 
fluid flows is discussed. The concept of gravitational available potential energy is used 
to formulate an energy budget in which the evolution of the background potential 
energy, i.e. the minimum potential energy attainable through adiabatic motions, can be 
explicitly examined. For closed systems, the background potential energy can change 
only due to diabatic processes. The rate of change of background potential energy is 
proportional to the molecular diffusivity. Changes in the background potential energy 
provide a direct measure of the potential energy changes due to irreversible diapycnal 
mixing. For open systems, background potential energy can also change due to 
boundary fluxes, which can be explicitly measured. The analysis is particularly 
appropriate for evaluation of diabatic mixing rates in numerical simulations of 
turbulent flows. The energetics of a shear driven mixing layer is used to illustrate the 
analysis. 

1. Introduction 
Density-stratified flows are an interesting and dynamically rich class of fluid motion. 

Because they occur so frequently in nature and in such a wide range of settings, these 
flows have been extensively studied from a variety of viewpoints. For turbulent flows, 
it is tempting to think of stratification primarily as a stabilizing force and hence regard 
density-stratified turbulence as a damped, less-energetic cousin of turbulence in a 
homogeneous fluid. This viewpoint is overly simplistic, as gravitational forces in an 
inhomogeneous fluid admit additional modes of motion, e.g. internal gravity waves, 
adding complexity to the flow dynamics. Fluid displacements result in buoyant 
restoring forces, providing a pathway for conversion between kinetic and potential 
energy and the excitation of internal waves. Complicating the dynamics further, 
internal waves allow energy to be propagated into or away from localized regions of 
interest. These effects can play significant roles in the energy budgets of these flows. 
This is especially true in oceanic and atmospheric flows at small scales, where 
turbulence is often initiated and driven by the breakdown of wave-like flows. 

In this paper, we present a conceptual framework that allows the energetics of 
density-stratified fluid flow to be addressed in a unified and systematic manner. Our 
discussion is limited to nearly incompressible fluids, in the Boussinesq sense. The 
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analysis presented is based on the simple notion that, for closed fluid systems, only 
irreversible, diabatic processes can change the probability density function (p.d.f.) of 
density. We relate changes in the p.d.f. of density to changes in available and 
background potential energy of the fluid (see e.g. Lorenz 1955) and to the energetics 
of irreversible diapycnal mixing. Though originally formulated to describe large-scale 
atmospheric flows, the concept of available potential energy has also been applied in 
the oceans, both at large scales (Oort et al. 1989) and small scales (Dillon & Park, 
1987). Oceanographers have long appreciated the intrinsic relationship between 
available potential energy and turbulent mixing and dissipation. Sorting vertical 
temperature profiles (Thorpe 1977) and relating the potential energy of overturns to 
mixing (Dillon & Park 1987) are one-dimensional analogues of the analysis discussed 
here. 

The methodology presented is particularly useful for analysing numerical simu- 
lations of density-stratified flows. The analysis is quite general; it can be applied 
equally well to either direct numerical simulations (DNS) or large-eddy simulations 
(LES), to spatially homogeneous or localized turbulence, to steady-state or to transient 
flows. The analysis allows the energetics of density-stratified flows to be partitioned 
between diabatic and adiabatic processes. A direct consequence of this partitioning is 
that long time averaging is not required to determine the diabatic flux rates. Our 
original motivation was to develop an analysis that would allow instantaneous rates of 
mixing and dissipation to be quantified for a relatively wide class of simulated flows 
and to correlate the evolution of these rates with the evolution of the easily observable 
features of the flow. 

2. Molecular processes 
In order to treat the energetics of density-stratified flow, it is important to utilize the 

concept of available potential energy discussed by Lorenz (1955). The available 
potential energy of a fluid is the energy released if the fluid were to be adiabatically 
rearranged to the state of minimum potential energy. The distinction between adiabatic 
processes and diabatic processes is central to the analysis. In order to extend the 
definition to include oceanographic as well as atmospheric flows, we generalize the 
term adiabatic to describe a process in which there is no heat or molecular mass 
transfer, and define a diabatic process as one that is not adiabatic. In this discussion, 
we neglect radiative heat transfer, which could easily be included, and consider only the 
molecular diffusion of density in Boussinesq fluids. Though our approach can easily be 
generalized, we make no attempt to distinguish between the differing diffusion rates of, 
for example, salt and heat, nor do we address issues relating to nonlinearities in the 
equation of state. 

Because dissipation and diffusion rates for turbulent flows are orders of magnitude 
greater than for laminar flows, it is natural to use kinetic energy dissipation and 
diapycnal mixing rates to characterize turbulent flows. The kinetic energy dissipation 
rate is given per unit volume as (see e.g. Landau & Lifshitz 1987) 

where ui are the components of the velocity vector u, 7ij are the elements of the viscous 
stress tensor 7,  and xi are the spatial coordinates. For density-stratified turbulence, E’ 

gives only a partial description of the molecular processes. Molecular diffusion acts to 
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smooth density gradients, changing the potential energy. Diffusive mixing provides an 
alternative pathway for energy transfer not available to the flow of homogeneous 
fluids. In our analysis, we will make a careful distinction between changes in total 
potential energy and the energy expended in diapycnal mixing. This distinction is 
motivated in part by the intrinsic importance of molecular mixing for a wide class of 
turbulent flows. Molecular mixing rates are important in an oceanographic context, for 
example, because they influence the thermodynamic balance on much larger scales (see 
e.g. Gregg 1987). Characterization of density-stratified turbulence in terms of the rates 
at which molecular processes occur, i.e. dissipation and diapycnal mixing, is 
fundamental and enhances our understanding of the dynamics of these flows. 

Interestingly, analysis of the evolution equation for potential energy (see $4) does 
not allow the energetics of reversible processes to be readily distinguished from the 
energetics of irreversible fluid mixing. The energetics of mixing is most often discussed 
in terms of the buoyancy flux -gpW where g is the acceleration due to gravity, p is the 
density, w is the vertical velocity and the overbar represents a spatial and/or temporal 
averaging operator. The averaging operator is assumed to 'isolate' the turbulent 
component of the flow. For stratified turbulence in the presence of energetic internal 
waves, it is very difficult in practice to ensure that the averaging procedure yields an 
estimate that is free from contamination by adiabatic processes. In general, both 
spatial and long-time averages are required. Analyses of the energetics of transient 
mixing events based on this approach are intrinsically problematic. We overcome this 
difficulty by explicitly separating adiabatic and non-adiabatic changes in potential 
energy. 

3. Partitioning the potential energy 
We now address the following question. If we knew the initial state of a fluid flow, 

as well as its state at some arbitrary later time, how could we measure the energy 
expended in diabatic mixing that has occurred in the interim? For convenience, we 
assume that the state of the flow is known within a fixed volume V and that no heat 
or mass fluxes are allowed at the boundaries. Simply comparing total potential energy 
of the fluid between the two states is insufficient. As shown in $4, adiabatic processes 
can change the potential energy of the fluid irrespective of any diffusive mixing. 
Adiabatic processes transfer energy reversibly between kinetic and potential forms at 
a rate given by the volume-integrated buoyancy flux. During an arbitrary time interval, 
adiabatic processes may increase or decrease the total potential energy at a rate that 
can be either small or large in comparison with the irreversible increase associated with 
fluid mixing. Allowing the time interval between the two states to become arbitrarily 
small, we can see that what we really wish to address is the instantaneous rate of change 
of potential energy due to diapycnal mixing. 

To properly quantify the energetics of mixing, we need to be able to explicitly 
partition the changes in potential energy due to diabatic mixing from changes due to 
adiabatic processes. This partitioning is possible using Lorenz's concept of available 
potential energy. The potential energy of a fluid is defined as 

E p = g  pzdV, (2) S" 
where p is the density of the fluid and z is the vertical (positive upward) spatial 
coordinate. 
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The background potential energy Eb is defined as the minimum potential energy 
attainable through an adiabatic redistribution of p. Denoting the redistributed density 
field p(z*), where z*(x, t )  gives the vertical position in the reference state of the fluid 
parcel at position (x, t ) ,  we have 

If we think a fluid as an ensemble of macroscopic fluid elements, it is apparent that the 
background state p(zJ depends only on the p.d.f. of density over the ensemble of 
elements and is independent of the spatial distribution of the elements. 

Since the available potential energy E, is defined as the potential energy released in 
an adiabatic transition from p(x, t )  to p(z*), it follows that 

and that E, = E, + Eb. For a closed system, i.e. one in which no heat or mass transfers 
are allowed at the boundaries, adiabatic processes result in spatial redistribution of the 
density field p and changes in the total potential energy E,. Adiabatic processes do not 
change the p.d.f. of density and thus do not alter the background state p(z*). For closed 
systems, only diabatic mixing can produce changes in the background state p(z*). 
Furthermore, changes in the potential energy of the background state, Eb, are a direct 
measure of the energy expended in mixing the fluid. In this paper, we will discuss the 
energetics associated with changes in reference state induced by diapycnal mixing. In 
a related paper (Winters & D’Asaro 1995), an evolution equation for the reference state 
is developed. This leads naturally to an expression for the instantaneous diapycnal flux, 
which can then be spatially integrated to recover the energetics results discussed here. 

The relationship between the reference state of minimum potential energy and 
diapycnal mixing can be illustrated with a simple example. We consider a density- 
stratified Boussinesq fluid with prescribed velocity and density profiles that are known 
to be unstable to Kelvin-Helmholtz (KH) shear instabilities. (The initial profiles and 
the parameters governing the flow are given in 95.) Figure 1 (a) shows the initial p.d.f. 
of density, taken over discrete volume elements within the three-dimensional 
computational domain V. Also shown is the corresponding reference profile obtained 
by sorting the volume elements by density. 

The initial state was allowed to evolve, resulting in the formation of finite-amplitude 
KH billows at the interface. Figure 1 (b)  shows the density contours obtained from a 
single vertical-streamwise plane after three buoyancy periods. Examining the 
density contours, it is clear that the shear instability acts to produce fluid with more 
uniform properties, i.e. a mixed layer. The extent to which this process has occurred 
is evident in the corresponding p.d.f. shown in figure 1 (c). The excess of intermediate 
density values, coupled with deficits of both heavier and lighter values is an 
unambiguous signature of diabatic mixing. Changes in the p.d.f. of density indicate 
changes in the reference state p(z,), as shown in figure l(c), and the background 
potential energy Eb. 

For closed systems, only molecular mixing can alter the density p.d.f., the 
background state p(z*), and the background potential energy. For these flows, Eb is a 
robust indicator of the energetics associated with diabatic mixing. Open systems, i.e. 
those in which boundary fluxes are permitted, are more difficult to analyse. In open 
systems, changes in the background state can also result from advective surface fluxes 
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FIGURE 1. (a) The initial p.d.f. of density and the corresponding reference profile. (b) Density contours 
from a direct numerical simulation of a stably stratified mixing layer. (c) The p.d.f. of density and the 
reference profile after the fluid has become partially mixed. 

even in the absence of molecular mixing. In general, these fluxes alter both available 
and background potential energy. For example, one can imagine mass-conserving 
horizontal fluxes that change E, without changing Eb. A vertical mass flux across a 
horizontal surface, however, can produce changes in Eb without altering E, if the fluid 
is statically stable near the surface. 

4. Evolution of the potential energy 
These ideas can be made more precise by defining the energetic quantities of interest 

and deriving the corresponding evolution equations. The development is generalized to 
allow treatment of open systems in which heat and mass are advected and/or diffused 
across bounding surfaces. The equations of motion for a Boussinesq fluid (see e.g. 
Drazin & Reid 1981 ; Pedlosky 1979) are 

po - u + u .  vu = -vp+pg+v. z, 
[ i t  I 

(6)  

v . u = o ,  (7) 

a 
at 
- p + U - v p =  KV2p, 

where p is the Boussinesq density, po is a constant reference density, p is the pressure, 
t represents time, and V - 7 is the divergence of the viscous stress tensor 7ii. 

Within a fixed volume V, the potential energy E, is given in (2) and the kinetic energy 
Ek is defined as 

In the following development, we consider only cylindrical domains V, with cross- 
sectional area A ,  and horizontal upper and lower bounding surfaces. 
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An equation for the time rate of change of kinetic energy can be derived from (8) 
using ( 5 )  (see e.g. Gill 1982; Landau & Lifshitz 1987; Bird, Stewart & Lightfoot 1960): 

-Ek = - [ p u + p , ~ + ( ~ ~ + ~ ~ + ~ ~ ) - ~ * ~ l * i i d S -  gpwdV-e. (9) 
dt  f, s, 

Here u - r is the vector with components ui 7ij ,  ii denotes the unit vector normal to the 
surface S enclosing V, and e is the volume integral of e’ defined in (1). An evolution 
equation for potential energy can also be developed using (2), (6) and (7): 

The first term on the right-hand side of (9) gives the rate change of kinetic energy 
resulting from pressure work, advection, and viscous diffusion of energy across the 
bounding surface S. The second term gives the reversible rate of exchange with 
potential energy (due to buoyancy flux), while the third term gives the irreversible rate 
of conversion from mechanical to internal energy through viscous dissipation. 
Similarly, the first two terms on the right-hand side of (10) show that reversible changes 
in potential energy result from advective fluxes across S or through exchange with 
kinetic energy via the buoyancy flux. The third term gives the rate of change due to 
diffusive mass fluxes across S while the fourth term is the Boussinesq form of the 
conversion rate from internal to potential energy. The overbars indicate spatial 
averaging over the fixed horizontal area A.  

We would like to explicitly partition those changes in potential energy resulting from 
diabatic processes from those due to adiabatic processes. To accomplish this, we 
develop separate evolution equations for the background and available potential 
energies. Let z*(x, t )  be the reference position (in the state of minimum gravitational 
potential energy) of the infinitesimal element at (x, t )  with density p(x, t). Since 
Boussinesq fluid elements retain their density under adiabatic rearrangement, we can 
write 

(1 1) z*(x, t> = - H(p(x’, 4 -p(x,  4) d v‘, A ‘s 
where H is the Heaviside step function satisfying 

0, p(x, t )  < p(x0, t )  

H ( p ( x ,  t )  -&,, 4)  = +, p(x, t> = p(x0, t )  
1, p(x, t )  > p(x0,O. 

The variable z* has dimensions of length and can be interpreted as a statically stable 
ordering of the fluid elements, with z*(xl, t )  < z*(x2, t )  when p(x,, t )  > p(x,, t). The 
function z,(x, t )  has the same value at all points on a given isopycnal surface and so 
z* can be considered a unique function of density p. 

The time rate of change of background potential energy can then be written as 

gz,(x, t )  p(x, t )  d V. 

Differentiating, noting that the integration volume is fixed in time, gives 

S E b  d = (vg[z,$+p%]dV. 
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Using (1 l), the second term in (13) can be shown to be equal to zero when integrated 
over V. Substituting for applat using (6), we obtain 

Because the spatial dependence of z, is determined implicitly through p(x, t), we can 
write 

z, Vp = V$ where $ = rz , ( / j )  d/j. (15) 

Using (15) and integrating by parts, the time rate of change of Eb can be expressed in 
terms of surface and volume integrals: 

i Sv (16) 
d 
5 E b  = -g @U * fidS+Kg z,V2pdV. 

Noting that Vz, = (dz,/dp) Vp, the divergence operator in (16) can be distributed as 
follows : 

-g $@u - f i  dS  + K g  is Z, Vp - f i  dS + K g  - 3 IVpI2 d F' 
Ir d$ 1 .  (17) 

d 
dt 
-Eb = L-,,.-J 

sadu s d i f f  @d 

Here Sadv and Sdiff ,  respectively, are the rates of change of Eb due to advective and 
diffusive transfers of heat or mass across the bounding surface S .  For closed systems, 
Sadv and Sdiff  are both zero. gives the rate of change of Eb due to material changes 
in density within V, or equivalently, due to diapycnal mixing. Since the reference profile 
is statically stable by construction, dz,/dp < 0 and so Gd 2 0. Thus, background 
potential energy Eb always increases as a result of diapycnal mixing. 

For closed systems, (17) can be written as 

where P, = (g/po) 1 dz,/dpl-l and po is the characteristic density. The function P, is 
simply the buoyancy frequency obtained from the reference state of minimum potential 
energy. The term in brackets is closely related to the Cox number (see Gregg 1987), as 
discussed in Winters & D'Asaro (1995). 

Since Ep = E, + Eb, (17) implies that 

where is the reversible vertical buoyancy flux JvgpwdV and Gi = 
-KgA(p,,, -pbottom), the rate of conversion from internal to potential energy (see 
(10)). Equations (17) and (19) are generalizations of those given by Lombard (1989). 
The surface integrals in (19) give the rate of change of available potential energy 
resulting from advective and diffusive heat and mass transfer across bounding the 
surface. These terms vanish for closed systems. 

The energetics analysis can be summarized in the energy diagram shown in figure 2. 
We have found a time-dependent analysis based upon the energy diagram, i.e. an 
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FIGURE 2. Energy diagram for density-stratified Boussinesq flow. The energy within a fixed volume 
can be stored as kinetic, available potential, background potential, or internal energy. Energy is input 
to the flow through surface fluxes. Energy exchanges occur through buoyancy flux, diabatic mixing 
or viscous dissipation. The equation numbers giving the energy exchange rates are listed for each 
pathway. cPz is the reversible buoyancy flux, cPd the irreversible diapycnal mixing, E the irreversible 
kinetic energy dissipation and cP6 the irreversible conversion of internal to potential energy. 

instantaneous evaluation of the energy content of each component, along with the 
associated exchange rates, to be an extremely valuable tool for studying the dynamics 
of numerically simulated flows. The evolution equations for the various energy 
components can be obtained directly from the diagram. The time derivative of each 
component is equal to the sum of the rates corresponding to the arrows associated with 
that component. 

5. Energetics of a stably stratified mixing layer 
We now illustrate these ideas by examining the energetics of a shear instability in a 

density-stratified Boussinesq flow. A three-dimensional direct numerical simulation, 
very similar to the simulation of a stably stratified mixing layer studied by Staquet & 
Riley (1989), was performed and analysed in terms of available, background and total 
potential energy. A brief description of the numerical simulation is included here ; a 
more detailed discussion is given in Staquet & Riley (1989). 

An initial value problem for a stably stratified mixing layer was solved numerically 
using a three-dimensional, pseudo-spectral model. The equations of motion (5)-(7) 
were non-dimensionalized using the initial vorticity thickness of the flow, 6, and the 
initial velocity and density differences across the mixing layer, AU and Ap, as the 
length, velocity and density scales respectively. The initial state was specified by 
prescribing the following velocity and density profiles : 

@(z) = gr f  (n1I2(z - zl/2)), p(z) = -$rf (n1l2(z - z,,,)), (20) 

where z1,2 is the vertical midpoint. The Richardson number of the initial state is defined 
as Ri = N 2 6 2 / A V ,  where N2 = (g/po) Ap/6  and was set to 0.167. The initial state is thus 
unstable to KH shear instabilities (Drazin & Reid 1981; Thorpe 1987). The Reynolds 
number 6AU/v  and the Prandtl number v/K were given values of 600 and 1 respectively. 
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FIGURE 3. Temporal evolution of the spanwise vorticity for a stably stratified mixing layer. Times 
are given in buoyancy periods. 

A two-dimensional velocity perturbation, obtained by solving the Taylor-Goldstein 
equation for the most unstable mode for the profiles (20), was added to the initial 
conditions at low amplitude. In addition, a broad-banded spectrum of three- 
dimensional ‘noise’ was prescribed. The equations of motion were then solved 
numerically in a cubic domain with sides of length 2x/k, where k is the horizontal 
wavenumber of the most unstable KH mode. The solution was required to satisfy free- 
slip conditions at the upper and lower boundaries and periodicity conditions in both 
horizontal directions and was obtained on a 6 4 x 6 4 ~ 6 5  numerical grid. The 
calculation discussed here differs slightly from that of Staquet & Riley (1989) in that 
the Prandtl number is unity rather than 0.7, the Reynolds number is increased from 440 
to 600 and a broad-banded rather than a narrow-banded three-dimensional noise field 
was initialized. 

Figure 3 shows the time evolution of the y-component of vorticity { = w, - uy, where 
subscripts indicate differentiation, in the y = x/k streamwise-vertical plane. The KH 
mode of instability is well developed by t = 2. Smaller scales of motion are clearly 
evident by t = 4. The initial vorticity is much reduced and exists over a significantly 
expanded vertical extent by t = 7. The corresponding isopycnals, as well as contours 
of kinetic energy and density variance dissipation rates are shown in Winters & 
D’Asaro (1995). 
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We now examine the changes in potential energy of the flow as it evolves in time. 
Since the flow under consideration comprises a closed system, the following simplified 
energy equations hold : 

d 
-Ep dt = Q2+Qi, 

d 
dt 
- Eb = Qd, 

d 
dt 
- E, = Qz - (Qd - Qi). 

Before analysing the simulated flow, it is instructive to consider a related simpler 
problem. Suppose that the initial state were to consist of the initial density and velocity 
profiles (20), but with no perturbations. For this case, Ep = Eb and E, = 0 initially. 
Because no vertical motions develop, the buoyancy flux Q2 remains identically equal to 
zero. The initial density profile diffuses, increasing the potential energy Ep at the rate 
Qi. The increase in potential energy occurs at the expense of the internal energy of the 
fluid. Provided the upper and lower boundaries are sufficiently far away, the rate of 
increase of Ep remains constant. Because the slowly evolving density profile maintains 
its static stability as it diffuses, the flow is always in its reference state of minimum 
potential energy. No available potential energy is created and hence Qd = Qi. (Note 
that for this one-dimensional flow, V p  = dp/dz and dz,/dp = (dp/dz)-'. Thus, Qd can 
be formally reduced to Qi.) 

If we now consider perturbed initial conditions, such that a shear instability is 
allowed to develop, we expect the rate of mixing, i.e. Qd, to increase substantially in 
relation to the unperturbed flow, especially if the mixing layer becomes turbulent. 
Figure 4(a) shows the time evolution of the potential energies of the simulated, 
perturbed flow relative to their initial values. Note that the cumulative energy change 
associated with the uniform rate of laminar diffusion has been subtracted from the 
total and background potential energies, thus emphasizing the energetics associated 
with the shear instability. The resulting energies are denoted Ek and Eb. The energy 
transfer rates are shown in figure 4(b). 

Early in the flow evolution, between about t = 0 and 2, the potential energy increases 
owing to the positive vertical buoyancy flux Qz. The increase in potential energy results 
from the adiabatic displacement of fluid parcels away from their equilibrium positions 
and is stored almost exclusively as available potential energy. This process occurs at 
lengthscales that are large in comparison to the diffusive scales. During this time 
interval, the background potential energy does not change appreciably. 

The production of background potential energy EL, which occurs primarily between 
about t = 2 and 5 ,  is the result of small-scale diffusive mixing. Note that the irreversible 
rate of production Qd is maximal during this time interval and that the available 
potential energy decreases despite a gradient (Qz > 0) buoyancy flux. 

After about t = 5,  the buoyancy flux is nearly zero though often slightly counter- 
gradient. During this period of (weak) restratification, Qd > 0 and the background 
potential energy EL continues to increase via diffusive mixing. This example illustrates 
one of the difficulties inherent in diagnosing mixing via the buoyancy flux. Even 
prolonged periods of zero or counter-gradient buoyancy flux do not necessarily imply 
the absence of diapycnal mixing. That irreversible diffusive mixing can take place in a 
restratifying flow is more clearly shown in the large-eddy simulation of wave instability 
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FIGURE 4. (a) Time evolution of total, available and background potential energies. 
(b) Instantaneous rates of energy exchange. 

near a critical level discussed in Winters & D’Asaro (1994) (see figure 14 of that paper). 
In that simulation, nearly all the observed mixing occurred during the collapse of the 
wave packet while the buoyancy flux was counter-gradient. 

Figure 4(b) also shows that the maximum value of @a is only about three times the 
laminar rate cDt. For truly turbulent flows, the ratio of these rates will be much higher, 
even by orders of magnitude. The low ratio observed here indicates that the simulated 
flow is hardly turbulent at all, a consequence of the low Reynolds number. It is 
interesting to note that the instantaneous mixing efficiency, i.e. the ratio of the rate of 
irreversible increase of background potential energy due to mixing cDd to the rate of 
irreversible kinetic energy dissipation 6, is quite high compared to the values typically 
observed in laboratory grid turbulence (see e.g. Ivey & Imberger 1989). The mixing 
efficiency ranges from about 0.38 at t z 4 to 0.65 by about t = 14. These high values 
may also be a consequence of the low Reynolds number of the simulation. Further 
discussion of the mixing efficiency of this flow can be found in Winters & D’Asaro 
(1995). 
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6. Numerical implementation 
As we have seen in $4, the partitioning of potential energy into available and 

background components depends on being able to determine the reference profile 
p(z*) associated with the minimum potential energy state. This state is obtained in 
principle by allowing the fluid to restratify adiabatically. It can be obtained 
mathematically via (1 1). Alternatively, a three-dimensional sorting of discrete fluid 
elements can be used to yield a useful approximation. If we let the fluid elments 
correspond to volume elements of a numerical grid, then standard sorting algorithms 
can be used to produce a one-dimensional array of monotonically increasing density 
values. These density values can then be distributed through the original grid with the 
heaviest elements on the bottom and lighter elements above. A three-dimensional, 
sorted density field is obtained that is everywhere statically stable and approximately 
uniform over each horizontal plane. This state can then be used as a numerical 
approximation the reference state. 

The computed background density is only an approximation of the density 
distribution with minimum potential energy. This is because each horizontal layer of 
fluid elements in the sorted field generally consists of different density values. In a 
physical system, fluid elements that are represented numerically as being side by side 
in a layer could change their shape, producing separate layers of continuously varying 
density. In other words, a physical system can adjust to create a density gradient 
exactly parallel to gravity, while that is not possible in our approximate numerical 
representation. By interpolating the density field between each level, the available 
potential energy that remains in the sorted density distribution can be calculated and 
used as an error estimate. For a flow in which the displacements are small in 
comparison with the vertical grid spacing, the remaining potential energy is a 
significant fraction of the available potential energy. We have found generally that 
when the r.m.s. displacement exceeds the vertical grid spacing, the error in the 
computed available potential energy is insignificant. In one case we studied, the 
displacements were always small with respect to the grid spacing and interpolation of 
the density field was required before the sorting procedure converged to the background 
profile. 

Once the reference density distribution has been found, the total and background 
potential energies can be easily computed by numerically integrating over the volume 
of interest. The available potential energy is then found by simply taking the difference 
between the total potential energy of the fluid and the potential energy of the 
numerically approximated reference profile. Further discussion and an estimate of 
approximation errors can be found in Lombard (1989). 

7. Discussion 
We have outlined an approach for analysing the energetics of density-stratified 

turbulence. To a large degree, our approach depends on an explicit distinction between 
diabatic and adiabatic processes made possible by exploiting the concept of available 
potential energy. We believe that this approach, summarized in the energy diagram of 
figure 2, provides a useful framework for analysing density-stratified turbulence. 
Because of the intrinsic importance of turbulent mixing in geophysical flows, our 
discussion has emphasized the energetics of mixing in stratified flows. There appears to 
be a lack of consensus in the literature with respect to the interpretation of buoyancy 
flux, particularly counter-gradient buoyancy flux, and its relationship to diabatic 
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mixing. As this relationship depends critically on available potential energy dynamics, 
we hope that this conceptual framework will help to clarify this issue. 

It is important to realize that changes in potential energy produced by a buoyancy 
flux occur adiabatically, at the expense of kinetic energy, as fluid elements are advected 
away from their equilibrium positions. This process is distinct from diabatic mixing 
and occurs even in non-diffusive fluids. The relationship between buoyancy flux and 
mixing is unambiguously defined by the balance equation for available potential 
energy. If there are no surface fluxes and E, remains constant, then the diabatic mixing 
rate Qd is balanced by the buoyancy flux Qz. Buoyancy flux is an indirect rather than 
a direct measure of diapycnal mixing. Because a direct relationship between rates of 
buoyancy flux and diapycnal mixing does not hold generally, inferring mixing rates 
using only the buoyancy flux is not a robust procedure and often leads to confusion. 

Simplified energetics balances are often used to interpret bulk averages of 
instantaneous microstructure measurements in the ocean (Gregg 1987). These balances 
do not necessarily describe the energetics of isolated transient events that may 
characterize oceanic turbulence. For these and other unsteady flows, at least in 
numerical simulations, a more precise accounting of the energy exchanges is possible. 
A better understanding of the transient dynamics of representative turbulent flows may 
in fact lead to a better understanding of the statistics of oceanic microstructure data. 
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